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Abstract
To a unitary matrix U we associate a doubly stochastic matrix M by taking the
squared modulus of each element of U . To study the connection between onset
of quantum chaos on graphs and ergodicity of the underlying Markov chain,
specified by M , we study the limiting distribution of the spectral gap of M

when U is taken from the circular unitary ensemble and the dimension N of U

is taken to infinity. We prove that the limiting distribution is degenerate: the
gap tends to its maximal value 1. The shape of the gap distribution for finite N

is also discussed.

PACS numbers: 0545M, 0210D, 0250G, 0510G, 0270H

1. Introduction

Recently, it was proposed by Kottos and Smilansky [1, 2] that quantum graphs can serve as a
good ‘toy’ model for quantum chaos. Numerical simulations confirmed that for some classes
of graphs, including the fully connected graphs, the Bohigas–Giannoni–Schmit conjecture [3]
holds true. By this we mean that various statistical functions of the spectrum of the graphs
converge to the corresponding functions obtained in random matrix theory (RMT) [4] in the
limit as the number of vertices is taken to infinity.

On the graphs, the quantum evolution operator assumes the form of a finite unitary matrix
U . In [1, 2] it was argued that the classical counterpart of the quantum system is the Markov
chain on the directed bonds of the graph with the matrix M of the transition probabilities given
by

Mb,b′ = |Ub,b′ |2. (1)

It was conjectured that there is a link between ergodicity of the Markov chain and the
convergence of the quantum statistics to RMT results.

However, in [5] it was shown that the statistics for a special family of graphs, the quantum
star graphs, converge to a non-RMT limit as the size of the graphs increases. However
‘classically’ the star graphs have nice properties: the corresponding Markov chain possesses a
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unique attracting equilibrium distribution which corresponds to the eigenvalue 1 of M . Thus
ergodicity of each graph does not immediately imply RMT-like behaviour.

It is well known that a good quantitative measure of ergodicity of a Markov chain is its
spectral gap. Given the spectrum {1, λ2, λ3, . . . , λN } of M , the spectral gap is defined as

g = 1 − max
i=2,...,N

|λi |. (2)

The spectral gap indicates the speed of convergence of any initial distribution to the equilibrium
one: the greater g is, the faster is the convergence. Tanner [6,7] suggested that if for a sequence
of graphs the spectral gap of the corresponding Markov chains is uniformly bounded away
from zero, then the spectral statistics will converge to their RMT form. This seems to be a
good indicator of the conformance to RMT: while for each star graph the gap is non-zero, it
decreases to zero as we increase the size of the graph. And in the numerically verified cases
of RMT-like behaviour the gap stays bounded away from zero.

To investigate the connection between random unitary matrices and the ergodicity of their
‘classical’ analogues, we ask the following question: given a large random unitary matrix, can
the probability distribution of the spectral gap of the corresponding Markov chain be found?

2. Preliminaries

Since the most natural ensemble of the unitary matrices is the circular unitary ensemble (CUE),
we shall restrict our attention to it, although the generalization of the problem to other ensembles
is straightforward.

Definition 1. CUE(N) is defined as the ensemble of all unitary N ×N matrices endowed with
the probability measure that is invariant under every automorphism

U �→ V UW (3)

where V and W are any two N × N unitary matrices.

Definition 2. An entrywise non-negative N × N matrix M is called doubly stochastic if
N∑

i=1

Mi,j = 1 ∀j and
N∑

j=1

Mi,j = 1 ∀i. (4)

We denote the set of all such N × N matrices by DS(N).

If U is unitary then the matrix M defined by (1) is doubly stochastic. For a Markov chain
it means that the uniform measure is invariant, that is (1/N, . . . , 1/N) is a left eigenvector of
M with the eigenvalue 1.

Remark 1. It is easy to check that if A, B ∈ DS(N) then AB ∈ DS(N), thus DS(N) forms
a semigroup.

Now we define the function S : CUE(N) → DS(N) to map U to M according to (1). It
is clear that S induces a probability measure on the semigroup DS(N). Thus our question is:

What is the probability distribution of the spectral gap g if the matrices M are selected
randomly with the probability induced by the correspondence S?

We denote the gap probability density function by fN (g) and the corresponding cumulative
distribution by FN (g) = ∫ g

0 fN (g′) dg′. For convenience we also denote by λ2(M) the second
largest (by modulus) eigenvalue of the doubly stochastic matrix M ,

|λ2(M)| = max
i=2,...,N

|λi | (5)

and, as a consequence, g = 1 − |λ2(M)|.
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Figure 1. Cumulative distribution function of the gaps of the doubly stochastic matrices obtained
from the unitary matrices from CUE(N) for different values of N .

3. Numerics and a conjecture

First of all we are going to present the results of some numerical simulations. The
algorithm we used is simple: random matrices from CUE(N) are generated using the Hurwitz
parametrization [8] (see also [9]), the spectrum of the corresponding doubly stochastic matrix
M is computed and the gap is calculated according to definition (2).

The cumulative distribution functions obtained for N = 2, 3, 5, 10, 20, 40, 80 for sample
sizes of 105 are shown in figure 1. From the plot we can see that the typical gap tends to 1 as
we increase N . Thus it is natural to conjecture that the gap probability density function fN (g)

converges to δ(g − 1) in the sense of distributions as N → ∞ or, in other words,

Pr {0 � g � a} → 0 as N → ∞ ∀a < 1. (6)

Further evidence in support of this guess is presented by figure 2, where the mean E|λ2|
and the standard deviation σ of the second largest eigenvalue are plotted as functions of N . A
good fit to the mean is given by E|λ2| ∝ 1/

√
N (which is supported by heuristic observations

presented in section 4). Note that since 0 � |λ2| � 1 and

E|λ2| � a Pr {a � |λ2| � 1} + 0 Pr {0 � |λ2| � a} = a Pr {0 � g � a} (7)

to verify (6) it is enough to show that E|λ2| → 0 as N → ∞.

4. Verification of the conjecture

4.1. N = 2 case

In the case of N = 2 it is easy to calculate the gap probability explicitly. For completeness
we include the derivation although it is obvious from figure 1 that the distribution for N = 2
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Figure 2. Estimations of the mean (open circles) and the standard deviation (open squares) of
the modulus of the second largest eigenvalue λ2(M) as functions of N . The error bars (based on
the 95% confidence interval) are too small to be indicated: they are of the order of 1.5% for the
deviation and less than 0.2% for the mean. The curves correspond to the best fit with the power
law. The exponents are −0.49 for the mean and −1.167 for the deviation.

is not typical. A 2 × 2 unitary matrix can be parametrized as

U = eiα

(
eiψ cos φ eiχ sin φ

−eiχ sin φ e−iψ cos φ

)
(8)

with

0 � α � 2π 0 � χ � 2π 0 � ψ � 2π 0 � φ � π/2. (9)

The Haar (uniform) measure on the CUE(2) can be expressed in terms of the parameters α, χ ,
ψ and φ as (2π)−3 dα dχ dψ d sin2φ. The corresponding doubly stochastic matrix is

M =
(

cos2 φ sin2 φ

sin2 φ cos2 φ

)
(10)

with eigenvalues 1 and cos2 φ − sin2 φ. Thus the gap is equal to 2 min(1 − sin2 φ, sin2 φ) and
its distribution is uniform on the interval [0, 1] (which agrees with figure 1).

4.2. Mean of the second largest eigenvalue

Theorem 1. Let λ2(M) be the second largest (by modulus) eigenvalue of the random doubly
stochastic matrix M drawn from DS(N) with the probability induced by the correspondence
S : CUE(N) → DS(N). Then

E|λ2| → 0 as N → ∞. (11)

As a consequence, the gap distribution fN (g) converges to δ(g−1) in the sense of distributions
as N → ∞.
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Figure 3. Histogram of the numerical data from the simulation of |λ2| for N = 80 and the fitted
GEV probability density function.

Proof. The eigenvalues of M ∈ DS(N) are, in general, complex. It would be more convenient
to deal with non-negative real eigenvalues. The trick is to consider the matrix A = MTM

which, due to the semigroup property is also doubly stochastic. In addition, it is symmetric
(all its eigenvalues are real) and positive definite (i.e. all its eigenvalues are non-negative). To
relate the eigenvalues of the matrices A and M we write for the second largest eigenvalue of
A,

λ2(A) = max
|x|=1, (x,e)=0

(Ax, x) � (Ay, y) = (My, My) = |λ2(M)|2 (12)

where e = (1, . . . , 1)T is the eigenvector of both A and M with the eigenvalue 1, and y is the
eigenvector of M corresponding to λ2(M). From (12) and the inequality (Eξ)2 < E(ξ 2) we
infer that to prove the theorem it is enough to show that the mean of |λ2(A)| converges to zero
as N → ∞.

The simplest way to estimate the second largest eigenvalue of A is to compute its trace.
Since A is positively defined, we have

Tr An � 1 + λ2(A)n. (13)

Thus if we can find such n that E(Tr An) → 1, it will imply that E(λ2(A)) → 0. It turns out
that it is enough to take n = 2. However, let us also consider n = 1.

Tr A =
N∑

i=1

(MTM)i,i =
N∑

i,j=1

(MT)i,j (M)j,i =
N∑

i,j=1

M2
j,i =

N∑
i,j=1

|Ui,j |4. (14)

And calculating the mean

E(Tr A) =
N∑

i,j=1

E|Ui,j |4 = N2E|U1,1|4 (15)
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where due to the invariance of measure of CUE(N) the means of the different matrix
elements are equal. To calculate E|U1,1|4 one can either integrate over the measure of
CUE(N), as was done in [10], or apply various invariance considerations [11]. The result
is E|U1,1|4 = 2/(N2 + N) and therefore E(Tr A) → 2 as N → ∞. This agrees with the
numerical observation that E|λ2(M)| ∝ 1/

√
N : the eigenvalues of A are then of order 1/N

and there are N − 1 of them (not counting the 1).
In the case n = 2 we have

Tr A2 =
N∑

i,j,k,l=1

(MT)i,j (M)j,k(MT)k,l(M)l,m =
N∑

i,j,k,l=1

|Uj,iUj,kUl,iUl,k|2

=
∑

i �=k,j �=l

|Uj,iUj,kUl,iUl,k|2 +
∑

i=k,j �=l

|Uj,iUl,i |4

+
∑

i �=k,j=l

|Uj,iUj,k|4 +
∑

i=k,j=l

|Uj,i |8. (16)

Applying the averaging we again find that due to the invariance of the measure all contributions
from the first sum are the same and there are (N2 − N)2 of them; there are 2N2(N − 1)

contributions from the second and the third sum (the contributions are equal) and N2

contributions from the last. Counting the number of terms in each sum, we write

E Tr A2 = (N2 − N)2E|U1,1U1,2U2,1U2,2|2 + 2N2(N − 1)E|U1,1U1,2|4 + N2E|U1,1|8 (17)

where the averages can be calculated using [11]:

E|U1,1U1,2U2,1U2,2|2 = N2 + N + 2

N2(N2 − 1)(N + 2)(N + 3)
(18)

E|U1,1U1,2|4 = 4

N(N + 1)(N + 2)(N + 3)
(19)

E|U1,1|8 = 24

N(N + 1)(N + 2)(N + 3)
. (20)

Bringing everything together, we obtain

E Tr A2 = N3 + 8N2 + 17N − 2

(N + 1)(N + 2)(N + 3)
= 1 + O

(
1

N

)
(21)

which effectively finishes the proof. �

5. Shape of the distribution of |λ2(M )|

It is now clear that the distributions fN (|λ2|) have singular limit. The natural question to ask,
then, is what is the shape of fN (|λ2|) for finite, but large, N and whether there are sequences
of normalizing coefficients aN and bN such that the random variables (|λ2| − aN )/bN have
continuous limiting distribution? While we are unable to give a definite answer, we can make
a guess. Since |λ2| = maxj=2,...,N |λj |, it is not unnatural to conjecture that for large N

the distribution of the second largest eigenvalue |λ2| is well approximated by the generalized
extreme value (GEV) distribution [12, 13], specified by its cumulative distribution function

G(x) = exp

{
−

[
1 + ξ

(
x − a

b

)]−1/ξ
}

(22)

for some (N -dependent) ξ , a and b: the GEV distribution is used to model maxima of sequences
of random variables.
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To check our conjecture we fit the numerical data for N = 80 to the form (22) using an
Splus routine by Coles [13]. The routine minimizes the log-likelihood function

l(a, b, ξ) =
k∑

i=1

{
− ln b

[
1 + ξ

(
xi − a

b

)]1+1/ξ

−
[

1 + ξ

(
x − a

b

)]−1/ξ
}

(23)

where xi is the sequence of observations of |λ2|. The result of the routine is plotted as the
probability density function G′(x) for fitted ξ = −0.07, a and b against the histogram of the
numerical data for |λ2|. One can see that the agreement is very good. The probability and
quantile plots, which we do not present here, also show good agreement. As N is taken to
infinity, the values of a and b decay to zero, so that the limit of the distribution is the step
function, and ξ saturates at a non-zero value.

6. Conclusions

We have shown that if we take the elementwise squared modulus of a large unitary matrix U ,
the resulting doubly stochastic matrix M will have a large spectral gap: with high probability
all the N − 1 ‘free’ eigenvalues will have small modulus. In particular, it means that the
Markov chain corresponding to M will quickly relax from any initial distribution into the
uniform stationary state.

While our observation is by no means a proof of Tanner’s [7] conjecture that the families
of graphs with large gap in their ‘classical’ spectrum will adhere to RMT predictions, it is
another powerful argument in its favour. We also note that the unitary evolution matrix of a
general graph is sparse due to the topological restrictions [1, 2]. Thus, although arbitrary U

can be considered as the scattering matrix for an N -star graph, the generalization of the gap
distribution to graphs with less trivial topology still remains to be studied.

The results for the mean of the traces of MTM and (MTM)2, obtained in the course of
our proof, completely agree with the numerical observation that the mean gap increases with
N like 1 − O

(
N−1/2

)
. We also presented numerical evidence in favour of the claim that for

finite N the distribution of the second largest eigenvalue is well approximated by the GEV
distribution.
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